Fabrication and cellular compatibility of aligned poly(hydroxy alkanoate) nanofibers for nerve tissue engineering
نویسندگان
چکیده
The ability to fabricate aligned nanofibers may open new avenues for the development of nerve regeneration using tissue engineering scaffolds. In this study, aligned poly(3-hydroxybutyrate)/poly(3-hydroxy butyrate-co-3-hydroxyvalerate) (PHB/PHBV) nanofibrous scaffolds were fabricated using electrospinning for the culture in vitro of Schwann cells (SCs) that physiologically assist in directing the growth of regenerating axons. The biocompatibility of the fabricated scaffolds was evaluated in terms of SCs adhesion and proliferation by DNA and metabolic activity quantification assays. In addition, scanning electron microscopy (SEM) and immunostaining analysis was performed to assess cell morphology and functionality. The results of this study showed that cells attached, proliferated and were metabolically active on scaffolds during 2 weeks of culture and positive for the SCs marker . Furthermore, SCs cultured on aligned nanofibers exhibited enhanced unidirectional cells orientation along the orientation of nanofibers and significantly higher proliferation and metabolic activity than those cultured on random nanofibers.
منابع مشابه
Fabrication, Characterization and Cellular Compatibility of Poly(Hydroxy Alkanoate) Composite Nanofibrous Scaffolds for Nerve Tissue Engineering
Tissue engineering techniques using a combination of polymeric scaffolds and cells represent a promising approach for nerve regeneration. We fabricated electrospun scaffolds by blending of Poly (3-hydroxybutyrate) (PHB) and Poly (3-hydroxy butyrate-co-3- hydroxyvalerate) (PHBV) in different compositions in order to investigate their potential for the regeneration of the myelinic membrane. The t...
متن کاملFabrication of coated - collagen electro-spun PHBV nanofiber film by chemical method and its cellular study
Tissue engineering is defined as the designing and engineering of structures to rebuild and repair a body damaged tissue. Scaffolding Poly Hydroxy Butyrate Valraty (PHBV) has shown good biocompatibility and biodegradable properties. Nanofibers have improved the performance of biomaterials, and could be considered effective. One of the important methods for designing nanofiber scaffold is the el...
متن کاملFabrication of coated - collagen electro-spun PHBV nanofiber film by chemical method and its cellular study
Tissue engineering is defined as the designing and engineering of structures to rebuild and repair a body damaged tissue. Scaffolding Poly Hydroxy Butyrate Valraty (PHBV) has shown good biocompatibility and biodegradable properties. Nanofibers have improved the performance of biomaterials, and could be considered effective. One of the important methods for designing nanofiber scaffold is the el...
متن کاملAligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
متن کاملPreparation and Characterization of Aligned and Random Nanofibrous Nanocomposite Scaffolds of Poly (Vinyl Alcohol), Poly (e-Caprolactone) and Nanohydroxyapatite
Nanofibrous scaffolds produced by electrospinning have attracted much attention, recently. Aligned and random nanofibrous scaffolds of poly (vinyl alcohol) (PVA), poly (ε-caprolactone) (PCL) and nanohydroxyapatite (nHA) were fabricated by electrospinning method in this study. The composite nanofibrous scaffolds were subjected to detailed analysis. Morphological investigations revealed that the...
متن کامل